Learning Statistics. Episode 14, Regression Predictions, Confidence Intervals.
(Streaming Film)

Book Cover
Average Rating
Contributors
Status

Description

Loading Description...

Also in this Series

Checking series information...

More Like This

Loading more titles like this title...

More Details

Published
[San Francisco, California, USA] : The Great Courses, 2017., Kanopy Streaming, 2019.
Format
Streaming Film
Language
English

Notes

General Note
Title from title frames.
General Note
Film
General Note
In Process Record.
Participants/Performers
Talithia Williams
Date/Time and Place of Event
Originally produced by The Great Courses in 2017.
Description
What do you do if your data doesn't follow linear model assumptions? Learn how to transform the data to eliminate increasing or decreasing variance (called heteroscedasticity), thereby satisfying the assumptions of normality, independence, and linearity. One of your test cases uses the R data set for miles per gallon versus weight in 1973-74 model automobiles.
System Details
Mode of access: World Wide Web.

Citations

APA Citation, 7th Edition (style guide)

Williams, T. (2017). Learning Statistics . The Great Courses.

Chicago / Turabian - Author Date Citation, 17th Edition (style guide)

Williams, Talithia. 2017. Learning Statistics. The Great Courses.

Chicago / Turabian - Humanities (Notes and Bibliography) Citation, 17th Edition (style guide)

Williams, Talithia. Learning Statistics The Great Courses, 2017.

MLA Citation, 9th Edition (style guide)

Williams, Talithia. Learning Statistics The Great Courses, 2017.

Note! Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy. Citation formats are based on standards as of August 2021.

MARC Record

Grouped Work ID
b737b0fe-a726-53a6-d91f-ed311f7e364d-eng
Go To Grouped Work

Grouping Information

Grouped Work IDb737b0fe-a726-53a6-d91f-ed311f7e364d-eng
Full titlelearning statistics episode 14 regression predictions confidence intervals
Authorthe great courses
Grouping Categorymovie
Last Update2024-04-30 15:17:32PM
Last Indexed2024-11-02 02:39:49AM

Book Cover Information

Image Sourcesideload
First LoadedSep 3, 2024
Last UsedSep 22, 2024

Marc Record

First DetectedAug 17, 2023 05:31:51 PM
Last File Modification TimeApr 30, 2024 03:20:54 PM

MARC Record

LEADER01853ngm a2200421 i 4500
001kan6733188
003CaSfKAN
00520191010121219.0
006m     o  c        
007cr una---unuuu
007vz uzazuu
008191010p20192017cau026        o   vleng d
02852|a 6733188|b Kanopy
035 |a (OCoLC)1129195031
040 |a CaSfKAN|b eng|e rda|c CaSfKAN
24500|a Learning Statistics.|n Episode 14,|p Regression Predictions, Confidence Intervals.
264 1|b The Great Courses,|c 2017.
264 1|a [San Francisco, California, USA] :|b Kanopy Streaming,|c 2019.
300 |a 1 online resource (streaming video file) (27 minutes):|b digital, .flv file, sound
336 |a two-dimensional moving image|b tdi|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
344 |a digital
347 |a video file|b MPEG-4|b Flash
500 |a Title from title frames.
500 |a Film
500 |a In Process Record.
5110 |a Talithia Williams
518 |a Originally produced by The Great Courses in 2017.
520 |a What do you do if your data doesn't follow linear model assumptions? Learn how to transform the data to eliminate increasing or decreasing variance (called heteroscedasticity), thereby satisfying the assumptions of normality, independence, and linearity. One of your test cases uses the R data set for miles per gallon versus weight in 1973-74 model automobiles.
538 |a Mode of access: World Wide Web.
650 0|a Mathematics.
655 7|a Education films.|2 lcgft
7001 |a Williams, Talithia,|e actor.
7102 |a The Great Courses (Firm),|4 dst
7102 |a Kanopy (Firm),|4 dst
85640|u https://losgatosca.kanopy.com/node/5733189|z A Kanopy streaming video
85642|z Cover Image|u https://www.kanopy.com/node/5733189/external-image